Interconnection Networks for Parallel Computers (cf. Grama et al.)

Interconnection Networks for Parallel Computers

- Interconnection networks carry data between the processor and memory
- The interconnections are implemented through switches and links (wires, fiber)
- The interconnections are classified as static or dynamic
- Static networks consist of point-to-point communications between nodes and are referred to as direct networks
- Dynamic networks are implemented using switches and communication links. They are also called indirect networks

Static and Dynamic Interconnection Networks

Figure 2.6 Classification of interconnection networks: (a) a static network; and (b) a dynamic network.

Metrics for the evaluation of networks

- Diameter
- Maximum distance between 2 nodes (better small diameters)
- Connectivity
- Minimum number of arcs that have to be removed to divide the network in 2 disconnected networks (better high connectivity)
- Bisection bandwidth
- Applied to a network of weighted arcs, where weights indicate the quantity of data that can be transferred
- Minimum volume of communications permitted between 2 halves of a network (better high)
- Cost
- Number of links of the network (better small)

Network Topologies: Buses

- Some of the earliest and simplest parallel machines used buses
- All processors have a common bus for the exchange of data
- The distance between any two nodes is $\mathbf{O}(\mathbf{1})$. The bus also provides a convenient means of broadcast
- However, the bandwidth of the shared bus is a significant bottleneck
- Bus-based machines are limited to some dozen nodes. Examples: Sun Enterprise servers and Intel-based shared-bus multiprocessors

Network Topologies: Buses

Figure 2.7 Bus-based interconnects (a) with no local caches; (b) with local memory/caches.
NB Given that the majority of the data accessed by the processor is local, a local memory (e.g. cache) for each node can improve the performance of such machines

Network Topologies: Crossbars

A crossbar network uses $\mathbf{a} \mathbf{p} \times \mathbf{b}$ grid of switches to connect \mathbf{p} inputs to b outputs in a non-blocking manner

Figure 2.8 A completely non-blocking crossbar network connecting p processors to b memory banks.

Network Topologies: Crossbars

- The cost of a crossbar of p processors grows as $\mathbf{O}\left(\mathbf{p}^{2}\right)$
- Hence, it is generally difficult to achieve good scalability in terms of cost for large values of p
- Examples of machines that use crossbars are Sun Ultra HPC 10000 and the Fujitsu VPP500

Network Topologies: Multistage Networks

- Crossbars have excellent scalability performance but poor cost scalability
- Buses have excellent cost scalability but poor performance scaling
- Multistage networks look for a balance between the two

Network Topologies: Multistage Networks

Figure 2.9 The schematic of a typical multistage interconnection network.

Network Topologies: Omega Multistage Networks

- One of the most well-known multistage networks is the OMEGA network
- This network consists of $\log p$ steps, where p is the number of inputs/outputs
- At each stage, the i input is connected to output j if (left_rotation):

$$
j= \begin{cases}2 i, & 0 \leq i \leq p / 2-1 \\ 2 i+1-p, & p / 2 \leq i \leq p-1\end{cases}
$$

Network Topologies: Omega Multistage Networks

Each stage of the Omega network implements a perfect shuffle as follows:

000	$0 \longrightarrow 0$	$000=$ left $_$rotate (000)
001		$001=$ left_rotate (100)
010		$010=$ left_rotate (001)
011	- 3	$011=$ left_rotate(101)
100		$100=1$ eft $_$rotate (010)
101		$101=$ left $_$rotate (110)
110	$6 \bigcirc 6$	$110=1$ eft_rotate(011)
111	$7 \longrightarrow 7$	$111=$ left_rotate(111)

Figure 2.10 A perfect shuffle interconnection for eight inputs and outputs.

Network Topologies: Omega Multistage Networks

- The perfect shuffle patterns are connected using 2×2 switches
- The switches operate in two ways: crossover or pass-through

(a)

(b)

Figure 2.11 Two switching configurations of the 2×2 switch: (a) Pass-through; (b) Cross-over.

Network Topologies: Omega Multistage Networks

A complete Omega network with a perfect shuffle

Figure 2.12 A complete omega network connecting eight inputs and eight outputs.
An omega network has $p / 2 \times \log p$ switching nodes, and the cost of such a network grows as $(p \log p)$.

Network Topologies: Omega Multistage Networks - Routing

- Let \mathbf{s} be the binary representation of the source node and \mathbf{d} the destination node
- Data crosses the link to the first node of the switch. If the most significant bits of \mathbf{s} and \mathbf{d} are the same, then data is routed by the switch in pass-through mode, or it will be in crossover mode
- This process is repeated for each of the $\log p$ switching stages (taking into consideration the next most significant bit)
- Note that this is not a non-blocking switch (i.e., not good!)

Network Topologies: Omega Multistage Networks - Routing

Figure 2.13 An example of blocking in omega network: one of the messages (010 to 111 or 110 to 100) is blocked at link AB.

Networks Topologies: Star Networks and Fully Interconnected Networks

(a)

(b)

Figure 2.14 (a) A completely-connected network of eight nodes; (b) a Star connected network of nine nodes.

Networks Topologies: Fully Interconnected Networks

- Each processor is connected to every other processor
- The number of links in the network scales as $O\left(p^{2}\right)$
- While the scalability of performance is very good, the hardware complexity is not feasible for large values of p
- In this sense, these networks are the static counterpart of the crossbar

Networks Topologies: Star Networks

- Each node is connected to a common "central" node
- The distance between any two nodes is O(1). However, the central node can become a bottleneck
- In this sense, star networks are static counterparts of bus networks

Networks Topologies Linear Arrays, Meshes and k-d Meshes

- In a linear array, each node has two neighbors, one at the left and one to the right. If the terminal nodes are connected, we refer to a 1-D torus or ring
- A generalization to two dimensions has nodes with 4 neighbors to the north, south, east and west
- A generalization to more dimensions has nodes with 2d neighbors
- A special case of d-dimensional mesh is the hypercube. In this case, $d=\log p$, where p is the total number of nodes

Networks Topologies : Linear Arrays, Biand Tri-Dimensional Meshes

Figure 2.15 Linear arrays: (a) with no wraparound links; (b) with wraparound link.

(a)

(b)

(c)

Figure 2.16 Two and three dimensional meshes: (a) 2-D mesh with no wraparound; (b) 2-D mesh with wraparound link (2-D torus); and (c) a 3-D mesh with no wraparound.

Networks Topologies : Hypercubes and their construction

Figure 2.17 Construction of hypercubes from hypercubes of lower dimension.

Networks Topologies : Hypercubes properties

1. The distance between any two nodes is at most $\log p$
2. Each node has exactly $\log p$ neighbors
3. The distance between two nodes is given by the number of bit positions in which the two nodes differ (e.g., 0110 and 0101 are distant 2 nodes)

Networks Topologies: TreeBased Networks

Figure 2.18 Complete binary tree networks: (a) a static tree network; and (b) a dynamic tree network.

Networks Topologies: Tree Properties

- The distance between any two nodes is no more than 2logp.
- The links that are upward require more communications of those located in the lower part of the tree
- For this reason, a variant called fat-tree, "thickens" the links as we climb the tree
- The trees can be arranged in 2D with no intersection. This is a very important property

Network Topologies: Fat Trees

A fat tree network of 16 processing nodes.

Evaluation of Static Interconnection Networks

Network	Diameter	Bisection Width	Arc Connectivity	Cost (No. of links)
Completely-connected	1	$p^{2} / 4$	$p-1$	$p(p-1) / 2$
Star	2	1	1	$p-1$
Complete binary tree	$2 \log ((p+1) / 2)$	1	1	$p-1$
Linear array	$p-1$	1	1	$p-1$
2-D mesh, no wraparound	$2(\sqrt{p}-1)$	\sqrt{p}	2	$2(p-\sqrt{p})$
2-D wraparound mesh	$2\lfloor\sqrt{p} / 2\rfloor$	$2 \sqrt{p}$	4	$2 p$
Hypercube	$\log p$	$p / 2$	$\log p$	$(p \log p) / 2$
Wraparound k-ary d-cube	$d\lfloor k / 2\rfloor$	$2 k d-1$	$2 d$	$d p$

Evaluation of Dynamic Interconnection Networks

Network	Diameter	Bisection Width	Arc Connectivity	Cost (No. of links)
Crossbar	1	p	1	p^{2}
Omega Network	$\log p$	$p / 2$	2	$p / 2$
Dynamic Tree	$2 \log p$	1	2	$p-1$

Communication costs

- Together with idling and resource contention, communication is the main cause of overhead in parallel programs (the cause that does not allow a speed-up = p)
- The cost of communication depends on several factors, including the semantics of the programming model, the network topology, data processing, and adopted routing software protocols

Communication Costs for Message Passing

- The total time to transfer a message over the network comprises:
- Startup time (\mathbf{t}_{s}): Time spent at the sender and receiver nodes (execution of the algorithm, routers, etc.)
- Per-hop time (t_{h}): Time taken by the header of the message to reach the next node. This time is a function of the number of hops (next nodes) and includes factors such as the latencies of switches, network delays, etc.
- Per-word transfer time $\left(\mathbf{t}_{w}\right)$: Given by $1 / r$, where r is the bandwidth (words / s). This time includes all the overheads that are determined by the length of the message. This includes the bandwidth of the links, error checking and correction, etc.

Store-and-Forward Routing

- A message that traverses multiple hops is completely received in an intermediate hop before being forwarded to the next hop
- The total cost of communication for a message of size m to cross / communication links is

$$
t_{c o m m}=t_{s}+\left(m t_{w}+t_{h}\right) l
$$

- In most platforms, t_{h} is small and the expression can be approximated by

$$
t_{c o m m}=t_{s}+m l t_{w} .
$$

Packet Routing

- The store-and-forward technique makes little use of communication resources
- The Packet Routing breaks messages into packets and forwards them, pipeline-type on the network (e.g.: Internet)
- Since different packets may take different routes, each packet must contain a header with information on routing, error checking, sequencing, and other information
- The total time of communication for packet routing is approximated by $t_{c o m m}=t_{s}+t_{h} l+t_{w} m$.
where the factor t_{w} also takes into consideration the overheads of the headers of each packet (that is different from that of the former)

Routing Tecniques

Figure 2.26 Passing a message from node P_{0} to P_{3} (a) through a store-and-forward communication network; (b) and (c) extending the concept to cut-through routing. The shaded regions represent the time that the message is in transit. The startup time associated with this message transfer is assumed to be zero.

Cut-Through Routing

- It takes the concept of packet routing in an "extreme" manner, by further dividing messages into basic units called flits (4-32 bytes)
- Each flit is forced to take the same path, in sequence (to save routing information)
- Since the flits are typically small, the header of the message is minimized
- A tracer message first "programs" all the intermediate routers. Subsequently, the flits take the same path

Cut-Through Routing

- The total time of communication to the cut-through is approximated by:

$$
t_{c o m m}=t_{s}+t_{h} l+t_{w} m
$$

$\boldsymbol{l}=$ hops; $\boldsymbol{m}=$ message length

- This is identical to the packet routing, although t_{w} is typically smaller
- Much better than store-and-forward, where I and \boldsymbol{m} were both multiplied

Simplified Cost Model for Communication Messages

- The cost of communicating a message between two remote nodes (hops) using the cut-through routing is given by

$$
t_{c o m m}=t_{s}+l t_{h}+t_{w} m .
$$

- In this expression, t_{n} is typically smaller than t_{s} and t_{w}. For this reason, the second term of the formula $/ t_{h}$ may be omitted, when \boldsymbol{m} is large
- Moreover, it is often impossible to control the routing (i.e., the actual calculation of I) and the allocation of tasks (e.g. the user has little control over the mechanisms of communication in MPI)
- So, in conclusion and in general, one can approximate the cost of a transfer of the message by:

$$
t_{c o m m}=t_{s}+t_{w} m
$$

Reviewing...
 $$
t_{c o m m}=t_{s}+l t_{h}+t_{w} m .
$$

implies that:

1. It 'better to aggregate messages and not send many small (to avoid every time t_{s})
2. Reduce the size of the message (to minimize \boldsymbol{t}_{w})
3. Reduce the distance between hops (to decrease I)
but 1 and 2 can be easily handled, but not 3 !

That's why we approximate all by:

$$
t_{c o m m}=t_{s}+t_{w} m
$$

Cost Models for Shared Address Space Machines

- While the basic mechanisms for the costs are valid for this kind of machines, a number of other factors may make difficult an accurate estimate:
- The memory layout is typically determined by the system
- Limited cache size can result in a cache thrashing (i.e. requested data is not present in cache)
- The associated overheads with the invalidate and update operations can be difficult to quantify
- Spatial locality is difficult to model
- False sharing and contention are difficult to model

Routing Mechanisms

- Routing
- Algorithm that is used to determine the route that a message will take form a source node to a destination one
- Minimum
- Selects always shorter route (but can produce congestion
- Not minimum
- Takes longer routes to avoid congestion
- Deterministic
- Determines a unique route
- Adaptive
- Uses information regarding the status of the network

Routing mechanisms for Communication Networks

- How do you calculate the physical path of a message from the source processor to the destination one?
- Routing must avoid deadlocks - for this reason, we use the dimension-ordered (for meshes) or E-cube routing (for hypercubes)
- The routing should avoid hot-spots. For this reason, the two-step routing is often used. In this case, a message from the source s to the recipient dis first sent to an intermediate node i and then randomly "forwarded" to destination d

Routing mechanisms for Communication Networks

Step $1(010 \rightarrow 011)$

Step 2 (011 -> 111)

Figure 2.28 Routing a message from node $P_{s}(010)$ to node $P_{d}(111)$ in a three-dimensional hypercube using E-cube routing.

E-cube routing: It makes XOR representations of Ps and Pd, and sends the message along the direction k of the least significant bit that is different from zero in the XOR operation.
The same is done for the intermediate nodes (considering Pi with Pd)

Mapping Techniques for Graphs

- MPI (but also other solutions) does not allow to have control over how processes are mapped onto processors
- Often, we need to map a communication pattern on a interconnection topology
- For example, we have a certain algorithm designed for a certain topology, and we are implementing it on another
- For this purpose, it is helpful to understand the mapping between different graphs

Example

Figure 2.29 Impact of process mapping on performance: (a) underlying architecture; (b) processes and their interactions; (c) an intuitive mapping of processes to nodes; and (d) a random mapping of processes to nodes.

Mapping Techniques for Graphs: Metrics

When you map a graph $G(V, E)$ on another graph $\mathrm{G}^{\prime}\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$, the following metrics are important:

- The maximum number of arcs mapped to any arc of E ' is called congestion of the mapping
- The maximum number of arcs of E' that any side of E is mapped is called dilation mapping.
- The ratio of the number of nodes in V^{\prime} and the set V is called the expansion of the mapping

Mapping of a Linear Array on a Hypercube

- A linear array (or ring) consists of $2^{\text {d }}$ nodes (labeled 0 to $2^{\mathrm{d}}-1$) can be mapped to a d-dimensional hypercube by mapping a node i of the node $G(i, d)$ of the hypercube using the function $G(i, x)$ defined as follows:

$$
\begin{aligned}
& G(0,1)=0 \\
& G(1,1)=1 \\
& G(i, x+1)= \begin{cases}G(i, x), & i<2^{x} \\
2^{x}+G\left(2^{x+1}-1-i, x\right), & i \geq 2^{x}\end{cases}
\end{aligned}
$$

Mapping of a Linear Array on a Hypercube

The function G is called the Binary Reflected Gray code (RGC)

With this encoding, the adjacent nodes ($G(i, d)$ and $G(i+1, d))$ differ by only one bit position, so the corresponding processors are mapped to neighboring nodes in the hypercube. Therefore, congestion, dilation and expansion are 1

Mapping of a Linear Array on a Hypercube: Example

(a)

(b)
(a) A ring based on the 3-bit Gray code; and (b) its mapping on a 3-D hypercube

Mapping of a Mesh on a Hypercube

- A $2^{r} \times 2^{s}$ toroidal mesh can be mapped onto a hypercube 2^{r+s} nodes mapping the node (i, j) of the mesh node $G(i, r-1) \| G(j, s-1)$ of the hypercube
(where the operator || denotes the concatenation of two codes Gray)

Mapping of a Mesh on a Hypercube

Processors in a column have
identical two least-significant bits

Processors in a row have identical two most-significant bits
(a) A 4×4 mesh mapped onto a hypercube in four dimensions; and (b) A $2 \times$ 4 mesh mapped on a three-dimensional hypercube

Even in this case,

 congestion, dilation and expansion are 1(b)

Mapping a Mesh on a 1D Array

- Given that a mesh has more sides of a 1D array, we will not have a mapping with optimal congestion/dilation
- Let's analyze first the mapping of a linear array on a mesh and subsequently reverse the mapping
- In terms of congestion, this mapping is, however, optimal

Mapping a Mesh on a 1D Array: Example

(a) Mapping a linear array into a 2D mesh (congestion 1).

(b) Inverting the mapping - mapping a 2D mesh into a linear array (congestion 5)
(a) Mapping of a linear array to 16 nodes on a 2-D mesh; and (b) reverse mapping. Bold lines correspond to linear arcs in the array - the normal lines to arcs of the mesh.

Mapping a Hypercube on a 2-D mesh

- Each sub-cube of \sqrt{p} nodes of the hypercube is mapped on a row of \sqrt{p} nodes of the mesh
- This is done by inverting the mapping of linear array on hypercube
- It can be shown that it is optimal!

Mapping a Hypercube on a 2-D mesh : Example

Mapping of a hypercube on a 2-D mesh

