
Interconnection Networks
for Parallel Computers

(cf. Grama et al.)

Interconnection Networks for
Parallel Computers

• Interconnection networks carry data
between the processor and memory

• The interconnections are implemented through
switches and links (wires, fiber)

• The interconnections are classified as static or
dynamic

• Static networks consist of point-to-point
communications between nodes and are referred
to as direct networks

• Dynamic networks are implemented using
switches and communication links. They are also
called indirect networks

Static and Dynamic
Interconnection Networks

• Diameter

– Maximum distance between 2 nodes (better small diameters)

• Connectivity

– Minimum number of arcs that have to be removed to divide the

network in 2 disconnected networks (better high connectivity)

• Bisection bandwidth

– Applied to a network of weighted arcs, where weights indicate

the quantity of data that can be transferred

– Minimum volume of communications permitted between 2 halves

of a network (better high)

• Cost

– Number of links of the network (better small)

Metrics for the evaluation of
networks

Network Topologies: Buses

• Some of the earliest and simplest parallel
machines used buses

• All processors have a common bus for the
exchange of data

• The distance between any two nodes is O(1).
The bus also provides a convenient means of
broadcast

• However, the bandwidth of the shared bus is a
significant bottleneck

• Bus-based machines are limited to some dozen
nodes. Examples: Sun Enterprise servers and
Intel-based shared-bus multiprocessors

Network Topologies: Buses

NB Given that the majority of the data accessed by the

processor is local, a local memory (e.g. cache) for each node can
improve the performance of such machines

Network Topologies: Crossbars

A crossbar network uses a p × b grid of switches to connect p inputs

to b outputs in a non-blocking manner

Network Topologies: Crossbars

• The cost of a crossbar of p processors

grows as O(p2)

• Hence, it is generally difficult to achieve

good scalability in terms of cost for large

values of p

• Examples of machines that use crossbars

are Sun Ultra HPC 10000 and the Fujitsu

VPP500

Network Topologies: Multistage

Networks

• Crossbars have excellent scalability performance

but poor cost scalability

• Buses have excellent cost scalability but poor

performance scaling

• Multistage networks look for a balance

between the two

Network Topologies: Multistage

Networks

Network Topologies: Omega

Multistage Networks

• One of the most well-known multistage

networks is the OMEGA network

• This network consists of log p steps, where

p is the number of inputs/outputs

• At each stage, the i input is connected to

output j if (left_rotation):

Network Topologies: Omega

Multistage Networks

Each stage of the Omega network implements a

perfect shuffle as follows:

Network Topologies: Omega

Multistage Networks

• The perfect shuffle patterns are

connected using 2 × 2 switches

• The switches operate in two ways:

crossover or pass-through

Network Topologies: Omega

Multistage Networks

An omega network has p/2 × log p switching nodes, and the

cost of such a network grows as (p log p).

A complete Omega network with a perfect shuffle

Network Topologies: Omega

Multistage Networks – Routing

• Let s be the binary representation of the source
node and d the destination node

• Data crosses the link to the first node of the
switch. If the most significant bits of s and d are
the same, then data is routed by the switch in
pass-through mode, or it will be in crossover
mode

• This process is repeated for each of the log p
switching stages (taking into consideration the
next most significant bit)

• Note that this is not a non-blocking switch (i.e.,
not good!)

Network Topologies: Omega

Multistage Networks – Routing

Networks Topologies: Star Networks and

Fully Interconnected Networks

Networks Topologies: Fully

Interconnected Networks

• Each processor is connected to every

other processor

• The number of links in the network scales

as O(p2)

• While the scalability of performance is very

good, the hardware complexity is not

feasible for large values of p

• In this sense, these networks are the

static counterpart of the crossbar

Networks Topologies:

Star Networks

• Each node is connected to a common

"central" node

• The distance between any two nodes is

O(1). However, the central node can become

a bottleneck

• In this sense, star networks are static

counterparts of bus networks

Networks Topologies

Linear Arrays, Meshes and k-d Meshes

• In a linear array, each node has two neighbors,

one at the left and one to the right. If the terminal

nodes are connected, we refer to a 1-D torus or

ring

• A generalization to two dimensions has nodes with

4 neighbors to the north, south, east and west

• A generalization to more dimensions has nodes

with 2d neighbors

• A special case of d-dimensional mesh is the

hypercube. In this case, d = log p, where p is the

total number of nodes

Networks Topologies : Linear Arrays, Bi-

and Tri-Dimensional Meshes

Networks Topologies :

Hypercubes and their construction

Networks Topologies :

Hypercubes properties

1. The distance between any two nodes is

at most log p

2. Each node has exactly log p neighbors

3. The distance between two nodes is

given by the number of bit positions in

which the two nodes differ (e.g., 0110 and

0101 are distant 2 nodes)

Networks Topologies: Tree-

Based Networks

Networks Topologies: Tree

Properties
• The distance between any two nodes is no

more than 2logp.

• The links that are upward require more

communications of those located in the lower

part of the tree

• For this reason, a variant called fat-tree,

"thickens" the links as we climb the tree

• The trees can be arranged in 2D with no

intersection. This is a very important property

Network Topologies: Fat Trees

A fat tree network of 16 processing nodes.

Evaluation of Static Interconnection

Networks

Network Diameter
Bisection

Width

Arc

Connectivity

Cost

(No. of links)

Completely-connected

Star

Complete binary tree

Linear array

2-D mesh, no wraparound

2-D wraparound mesh

Hypercube

Wraparound k-ary d-cube

Evaluation of Dynamic

Interconnection Networks

Network Diameter
Bisection

Width

Arc

Connectivity

Cost

(No. of links)

Crossbar

Omega Network

Dynamic Tree

Communication costs

• Together with idling and resource contention,

communication is the main cause of overhead

in parallel programs (the cause that does not

allow a speed-up = p)

• The cost of communication depends on several

factors, including the semantics of the

programming model, the network topology, data

processing, and adopted routing software

protocols

Communication Costs for Message Passing

• The total time to transfer a message over the network

comprises:

– Startup time (ts): Time spent at the sender and receiver

nodes (execution of the algorithm, routers, etc.)

– Per-hop time (th): Time taken by the header of the

message to reach the next node. This time is a function of

the number of hops (next nodes) and includes factors

such as the latencies of switches, network delays, etc.

– Per-word transfer time (tw): Given by 1 / r, where r is the

bandwidth (words / s). This time includes all the overheads

that are determined by the length of the message. This

includes the bandwidth of the links, error checking and

correction, etc.

Store-and-Forward Routing

• A message that traverses multiple hops is

completely received in an intermediate hop

before being forwarded to the next hop

• The total cost of communication for a message

of size m to cross l communication links is

• In most platforms, th is small and the

expression can be approximated by

Packet Routing
• The store-and-forward technique makes little use of

communication resources

• The Packet Routing breaks messages into packets and

forwards them, pipeline-type on the network (e.g.:

Internet)

• Since different packets may take different routes, each

packet must contain a header with information on

routing, error checking, sequencing, and other

information

• The total time of communication for packet routing is

approximated by

where the factor tw also takes into consideration the

overheads of the headers of each packet (that is

different from that of the former)

Routing Tecniques

Cut-Through Routing

• It takes the concept of packet routing in an

"extreme“ manner, by further dividing messages

into basic units called flits (4-32 bytes)

• Each flit is forced to take the same path, in

sequence (to save routing information)

• Since the flits are typically small, the header of the

message is minimized

• A tracer message first "programs" all the

intermediate routers. Subsequently, the flits take the

same path

Cut-Through Routing

• The total time of communication to the

cut-through is approximated by:

• This is identical to the packet routing,

although tw is typically smaller

• Much better than store-and-forward,

where l and m were both multiplied

l = hops; m = message length

Simplified Cost Model for

Communication Messages
• The cost of communicating a message between two

remote nodes (hops) using the cut-through routing is
given by

• In this expression, th is typically smaller than ts and tw.
For this reason, the second term of the formula lth may
be omitted, when m is large

• Moreover, it is often impossible to control the routing
(i.e., the actual calculation of l) and the allocation of
tasks (e.g. the user has little control over the
mechanisms of communication in MPI)

• So, in conclusion and in general, one can
approximate the cost of a transfer of the message by:

Reviewing…

implies that:

1. It 'better to aggregate messages and not send many small

(to avoid every time ts)

2. Reduce the size of the message (to minimize tw)

3. Reduce the distance between hops (to decrease l)

but 1 and 2 can be easily handled, but not 3 !

That's why we approximate all by:

Cost Models for Shared Address

Space Machines

• While the basic mechanisms for the costs are valid for this
kind of machines, a number of other factors may make
difficult an accurate estimate:

• The memory layout is typically determined by the
system

• Limited cache size can result in a cache thrashing (i.e.
requested data is not present in cache)

• The associated overheads with the invalidate and update
operations can be difficult to quantify

• Spatial locality is difficult to model

• False sharing and contention are difficult to model

• Routing

– Algorithm that is used to determine the route that a

message will take form a source node to a destination

one

• Minimum

– Selects always shorter route (but can produce

congestion

• Not minimum

– Takes longer routes to avoid congestion

• Deterministic

– Determines a unique route

• Adaptive

– Uses information regarding the status of the network

Routing Mechanisms

Routing mechanisms for

Communication Networks

• How do you calculate the physical path of a message

from the source processor to the destination one?

– Routing must avoid deadlocks - for this reason, we

use the dimension-ordered (for meshes) or E-cube

routing (for hypercubes)

– The routing should avoid hot-spots. For this reason,

the two-step routing is often used. In this case, a

message from the source s to the recipient d is first

sent to an intermediate node i and then randomly

"forwarded" to destination d

Routing mechanisms for

Communication Networks

E-cube routing: It makes XOR representations of Ps and Pd, and sends

the message along the direction k of the least significant bit that is different

from zero in the XOR operation.

The same is done for the intermediate nodes (considering Pi with Pd)

z (3)

y (2)

x (1)

011) (011 -> 111)

Mapping Techniques for

Graphs
• MPI (but also other solutions) does not allow to

have control over how processes are mapped

onto processors

• Often, we need to map a communication pattern on

a interconnection topology

• For example, we have a certain algorithm designed

for a certain topology, and we are implementing it

on another

• For this purpose, it is helpful to understand the

mapping between different graphs

Example

• (a) Mapping of real processors

• (b) Process Mapping

• (c) “Intuitive" Mapping

• (d) Random Mapping: the

communications between processors

increase up to 6 times!

Mapping Techniques for

Graphs: Metrics
When you map a graph G(V, E) on another graph

G'(V', E'), the following metrics are important:

• The maximum number of arcs mapped to any arc

of E’ is called congestion of the mapping

• The maximum number of arcs of E’ that any side of

E is mapped is called dilation mapping.

• The ratio of the number of nodes in V’ and the set V

is called the expansion of the mapping

Mapping of a Linear Array on

a Hypercube

• A linear array (or ring) consists of 2d nodes (labeled 0 to

2d - 1) can be mapped to a d-dimensional hypercube by

mapping a node i of the node G (i, d) of the hypercube

using the function G (i, x) defined as follows:

0

Mapping of a Linear Array on

a Hypercube

The function G is called the Binary

Reflected Gray code (RGC)

With this encoding, the adjacent nodes (G(i, d) and

G (i + 1, d)) differ by only one bit position, so the

corresponding processors are mapped to

neighboring nodes in the hypercube. Therefore,

congestion, dilation and expansion are 1

Mapping of a Linear Array on a

Hypercube: Example

(a) A ring based on the 3-bit Gray code; and (b) its mapping on a 3-D

hypercube

Mapping of a Mesh on a

Hypercube

• A 2r × 2s toroidal mesh can be mapped onto a

hypercube 2r + s nodes mapping the node (i, j) of

the mesh node G (i, r - 1) || G (j, s - 1) of the

hypercube

(where the operator || denotes the concatenation

of two codes Gray)

Mapping of a Mesh on a Hypercube

(a) A 4 × 4 mesh mapped onto

a hypercube in four

dimensions; and (b) A 2 ×

4 mesh mapped on a

three-dimensional

hypercube

Even in this case,

congestion, dilation and

expansion are 1

(b)

Mapping a Mesh on a 1D

Array
• Given that a mesh has more sides of a 1D

array, we will not have a mapping with

optimal congestion/dilation

• Let’s analyze first the mapping of a linear

array on a mesh and subsequently reverse

the mapping

• In terms of congestion, this mapping is,

however, optimal

Mapping a Mesh on a 1D Array: Example

(a) Mapping of a linear array to 16 nodes on a 2-D mesh; and

(b) reverse mapping. Bold lines correspond to linear arcs in

the array - the normal lines to arcs of the mesh.

Mapping a Hypercube on a 2-D

mesh

• Each sub-cube of nodes of the

hypercube is mapped on a row of

nodes of the mesh

• This is done by inverting the mapping of

linear array on hypercube

• It can be shown that it is optimal!

Mapping a Hypercube on a 2-D mesh :

Example

Mapping of a hypercube on a 2-D mesh

